Preparation, structure and properties of three $[Mo_xW_{4-x}S_4(H_2O)_{12}]^{5+}$ (x = 1-3) and $[MoW_3Se_4(H_2O)_{12}]^{5+}$ cuboidal complexes alongside $[Mo_4S_4(H_2O)_{12}]^{5+}$ and $[Mo_4Se_4(H_2O)_{12}]^{5+}$

DALTON FULL PAPER

Iain J. McLean,^a Rita Hernandez-Molina,^a Maxim N. Sokolov,^{a,b} Mi-Sook Seo,^a Alexander V. Virovets,^b Mark R. J. Elsegood,^a William Clegg^a and A. Geoffrey Sykes^{*,a}

The preparation of $[MoW_3S_4(H_2O)_{12}]^{5+}$, $[Mo_2W_2S_4(H_2O)_{12}]^{5+}$, $[Mo_3WS_4(H_2O)_{12}]^{5+}$ and $[MoW_3S_4(H_2O)_{12}]^{5+}$ from trinuclear incomplete cuboidal complexes $[W_3S_4(H_2O)_9]^{4+}$, $[MoW_2S_4(H_2O)_9]^{4+}$, $[Mo_2WS_4(H_2O)_9]^{4+}$ and $[W_3S_4(H_2O)_9]^{4+}$ respectively has been achieved by reaction with $[Mo_2Cl_8]^{4-}$. The structures of the 5+ cube $[MoW_3S_4(H_2O)_{12}][pts]_5$ ·Hpts·16H₂O (pts⁻ = *p*-toluenesulfonate) and $[Me_2NH_2]_6[MoW_3S_4(NCS)_{12}]$ ·0.5H₂O (6+ cube) have been determined by X-ray diffraction. Reversible behaviour is observed in cyclic voltammetry on the 5+ cubes, and reduction potentials ($E^{\circ\prime}$ vs. NHE) for the 6+/5+ and 5+/4+ couples have been determined. The cubes are more strongly reducing as the number of W atoms is increased with $E^{\circ\prime}/mV$ values for $[MoW_3S_4(H_2O)_{12}]^{6+/5+}$ (258), $[MoW_3S_4(H_2O)_{12}]^{5+/4+}$ (-395) significantly smaller than values previously reported for $[Mo_4S_4(H_2O)_{12}]^{6+/5+}$ (860) and $[Mo_4S_4(H_2O)_{12}]^{5+/4+}$ (210). Peaks λ /nm (ϵ /M⁻¹ cm⁻¹ per cube) from UV/VIS/NIR spectra in 2.0 M Hpts shift from 635(435), 1100(122) for $[Mo_4S_4(H_2O)_{12}]^{5+}$ to higher energy transitions at 522(660), 850(200) for $[MoW_3S_4(H_2O)_{12}]^{5+}$. Oxidation of the 5+ cubes with for example $[Fe(H_2O)_6]^{3+}$ gives first the 6+ cube which then decays with fragmentation to trinuclear products always with loss of W. While oxidation to the 6+ cube depends on reduction potentials, a different order is observed and other factors are important in the decay process.

Distinctive properties of the [Mo₄S₄(H₂O)₁₂]⁵⁺ cube include its well-defined redox chemistry, and the existence of two other oxidation states $[Mo_4S_4(H_2O)_{12}]^{4+}$ and $[Mo_4S_4(H_2O)_{12}]^{6+}$. These different states can be accessed by cyclic voltammetry as well as controlled redox interconversions. The 4+ Mo^{III}₄ cube has 12 electrons, sufficient for six metal-metal bonds, but is readily air oxidised to the 5+ ion.² In aqueous solution the 5+ cube (11e⁻) is the most readily accessed, and most extensively studied, while the 6+ cube (10e⁻) has a tendency to fragment due to its high charge and/or low electron count.³ In contrast ≈20 Group 6 to Group 15 heteroatom (M') derivatives of $[Mo_3S_4(H_2O)_9]^{4+}$, having single Mo₃M'S₄ or related double cube core structures, give no reversible electrochemistry,4 and with one exception (that of $M' = Cu)^5$ have only the one oxidation state which reverts in air to [Mo₃S₄(H₂O)₆]⁴⁺. Although crystal structures of cuboidal $[W_4S_4\{S_2P(OEt)_2\}_6]$, $[W_4Se_4(CN)_{12}]^{6-}$ (both 6+ cubes), and the W_4^V p-tolyl imido cube $[W_4S_4(tolN)_4\{S_2P(OEt)_2\}_4]$ have been described,⁶⁻⁸ no preparations of $[W_4S_4(H_2O)_{12}]^{n+}$ cubes n = 4, 5or 6 have yet been reported, and W4S4 cubes remain comparatively rare. In this paper we report the preparation of [Mo_x- $W_{4-x}S_4(H_2O)_{12}]^{5+}$ (x = 1-3) cubes. A key question is whether there is a well-defined redox chemistry involving three oxidation states, as in the case of [Mo₄S₄(H₂O)₁₂]⁵⁺, or whether properties are more like those of the heteroatom derivatives. Crystal structures of $[Mo_4S_4(H_2O)_{12}][pts]_5 \cdot 14H_2O$ (Hpts = p-toluenesulfonic acid), 9 [Mo₄S₄(NH₃)₁₂]Cl₄·7H₂O, 10 and different salts of [Mo₄S₄-(edta)₂]^{2-,3-,4-} have been reported. 11 The corresponding selenium clusters $[Mo_4Se_4(H_2O)_{12}]^{n+}$ (n = 4-6) have been prepared, and a crystal structure of $[Mo_4Se_4(H_2O)_{12}][pts]_5\cdot 14H_2O$ and other properties reported. ^{12,13}

Experimental

Preparation of starting materials

The polymeric compounds $\{W_3S_7Br_4\}_x$ and $\{W_3S_e_7Br_4\}_x$ were first obtained by heating W, S (or Se) and Br₂ together in a

sealed quartz tube. Preparation of $[W_3S_4(H_2O)_9]^{4+}$ and $[W_3S_4(H_2O)_9]^{4+}$ involved heating the appropriate polymeric compound (1 g) on a steam bath (≈ 90 °C) with excess H_3PO_2 (2 mL; 50% w/w in H_2O) in concentrated HCl (20 mL) for 15 h. The product was diluted two-fold and filtered to remove any unreacted solid, diluted to 0.2 M HCl and loaded onto a Dowex 50W-X2 cation exchange column, final elution with 2 M HCl or 2 M Hpts. Hpts. The purple $[W_3S_4(H_2O)_9]^{4+}$ product was characterised by its UV/VIS absorbance spectrum, peak positions λ /nm (ϵ /M $^{-1}$ cm $^{-1}$ per W_3) at 317 (6100), 570 (480) in 2 M HCl, and 315 (8650), 560 (546) in 2 M Hpts. A similar procedure was used to prepare green $[W_3S_4(H_2O)_9]^{4+}$ characterised by peak positions 359 (6600), 618 nm (547 M $^{-1}$ cm $^{-1}$) in 2 M Hpts, and 360 (6950), 625 nm (500 M $^{-1}$ cm $^{-1}$) in 2 M HCl. Hpts.

To prepare $[Mo_2WS_4(H_2O)_9]^{4+}$ and $[MoW_2S_4(H_2O)_9]^{4+}$, NaBH₄ (3 g in 20 mL H₂O) and 6 m HCl (20 mL) were slowly added (30 min) to a solution of ammonium tetrasulfidotungstate(vi), $[NH_4]_2[WS_4]$ (1 g),²⁰ and the Mo^V_2 -cysteine complex Na₂[Mo₂O₂(µ-S)₂(Cys)₂]·4H₂O (1.87 g)²¹ in H₂O (50 mL), as previously described.^{22,23} After addition of further HCl (6 m, 80 mL) the solution was heated in a conical flask on a steam bath (≈90 °C) for 5 h in air. After cooling, the greenbrown solution was filtered, loaded onto a G10 Sephadex column $(90 \times 4 \text{ cm})$, and eluted with 1.0 m HCl (>500 mL). Grey $[MoW_2S_4(H_2O)_9]^{4+}$ and green $[Mo_2WS_4(H_2O)_9]^{4+}$ bands were separated, and were further purified by Dowex 50W-X2 cation-exchange chromatography. The UV/VIS peak positions λ /nm $(\epsilon/m^{-1} \text{ cm}^{-1} \text{ per trinuclear cluster})$ in 2 m Hpts were close to those previously reported in 2 m HClO₄; for $[Mo_2-WS_4(H_2O)_9]^{4+}$ 340 (4390), 490 (sh) (298), 590 (322) and for $[MoW_2S_4(H_2O)_9]^{4+}$ 325 (5420), 490 (sh) (320), 570 (363).

Trinuclear $[Mo_3S_4(H_2O)_9]^{4+}$ formed as a decay product in some of the reactions considered herein has UV/VIS peak positions λ /nm (ϵ /M⁻¹ cm⁻¹ per Mo₃) at 370 (4995), 616 (326) in 2 M HCl, and 366 (5550), 603 (362) in 2 M Hpts.²²

^a Department of Chemistry, The University of Newcastle, Newcastle upon Tyne, UK NE1 7RU

^b Institute of Inorganic Chemistry, Russian Academy of Sciences, pr Lavrentjeva 3, Novosibirsk 630090, Russia

Table 1 Peak positions λ /nm (ϵ /m⁻¹ cm⁻¹ per cube) in the UV/VIS/NIR spectra of $[Mo_xW_{4-x}S_4(H_2O)_{12}]^{5+}$ and $[MoW_3Se_4(H_2O)_{12}]^{5+}$ alongside values previously reported for $[Mo_4S_4(H_2O)_{12}]^{5+}$ and $[Mo_4Se_4(H_2O)_{12}]^{5+}$ and

5+ Cube	Colour	λ /nm (ϵ /M ⁻¹ cm ⁻¹ per cube)	Ref.
$[MoW_3S_4(H_2O)_{12}]^{5+}$	Orange-brown	522 (660); 850 (200) ^a	This work
$[Mo_2W_2S_4(H_2O)_{12}]^{5+}$	Pink-grey	560 (534); 1020 (168) ^b	This work
$[Mo_3WS_4(H_2O)_{12}]^{5+}$	Green (-blue)	611 (499); 1038 (188) ^c	This work
$[Mo_4S_4(H_2O)_{12}]^{5+}$	Green	635 (435); 1100 (122)	1
$[MoW_3Se_4(H_2O)_{12}]^{5+}$	Brown-orange	514 (sh) (690); 874 (160) ^d	This work
$[Mo_4Se_4(H_2O)_{12}]^{5+}$	Green	425 (sh) (669); 662 (407); 1188 (117)	12

^a 522 (694); 857 (284). ^b 563 (502); 1000 (201). ^c 606 (457); 1040 (150). ^d 524 (769); 882 (172).

A sample of the purple-red octachlorodimolybdate(II) complex $K_4[Mo_2Cl_8]\cdot 2H_2O$ was obtained by reacting tetra- μ -acetatodimolybdenum(II) $[Mo_2(O_2CCH_3)_4]$ with concentrated HCl as described.²⁴

Other reagents

Sodium tetrahydroborate, NaBH₄; hypophosphorous acid (50% w/w solution in H₂O); white crystalline 98.5% *p*-toluenesulfonic acid (Hpts) as the monohydrate; 37% HCl AR grade; sodium thiocyanate; were all as obtained from Aldrich. Solutions of $[\text{Fe}(\text{H}_2\text{O})_6]^{3^+}$ were obtained by loading $\text{Fe}(\text{ClO}_4)_3$ (Fluka) onto a Dowex 50W-X2 cation-exchange column, and after washing with more dilute acid eluting with 1.0 M HCl or Hpts as required. The reduction potential of the $[\text{Fe}(\text{H}_2\text{O})_6]^{3^{+/2^+}}$ couple vs. NHE is 770 mV.²⁵

X-Ray crystallography

Crystal data for $[\text{MoW}_3\text{S}_4(\text{H}_2\text{O})_{12}][\text{pts}]_5$ ·Hpts·16H₂O: $\text{C}_{42}\text{H}_{103}$ -MoO₄₆S₁₀W₃, M = 2312.3, monoclinic, a = 13.8310(7), b = 31.0531(17), c = 19.7278(10) Å, $\beta = 110.311(2)^\circ$, U = 7946.2(7) Å³, T = 160 K, space group C2/c, Z = 4, $\mu(\text{Mo-K}\alpha) = 4.84$ mm⁻¹, 29 322 reflections measured (Bruker AXS SMART CCD diffractometer), 9508 unique ($R_{\text{int}} = 0.0372$) which were all used in refinement. Restraints were applied to disordered pts anions and water molecules. The final $wR(F^2)$ was 0.0762, with conventional R = 0.0303 ($F^2 > 2\sigma$).

Crystal data for [Me₂NH₂]₆[MoW₃S₄(NCS)₁₂]·0.5H₂O: C₂₄-H₄₉MoN₁₈O_{0.5}S₁₆W₃, M=1758.3, cubic, a=22.759(6) Å, U=11788(5) Å³, T=293 K, space group Pa3, Z=8, μ (Mo-K α) = 6.65 mm⁻¹, 5312 reflections measured (Enraf-Nonius CAD4 diffractometer), 2454 unique ($R_{\rm int}=0.0722$) which were all used in refinement. The final $wR(F^2)$ was 0.0646, with conventional R=0.0351 ($F^2>2\sigma$).

CCDC reference number 186/1048.

See http://www.rsc.org/suppdata/dt/1998/2557/ for crystallographic files in .cif format.

UV/VIS/NIR spectrophotometry

Measurements were carried out on a Perkin-Elmer Lambda 9 instrument, which includes the NIR range, and a Shimadzu 2101PC.

Electrochemistry

Cyclic voltammetry experiments were carried out using EG & G equipment with a computer interfaced PAR Model 173 potentiostat and a glassy carbon working electrode. The [Fe(CN)₆]³--[Fe(CN)₆]⁴- couple in 0.10 M KCl (410 mV vs. NHE) was used as an internal reference. The changes were confirmed as 1e⁻ reversible processes from square-wave voltammetry. From repeat determinations the reproducibility was ±6 mV.

ICP-AES analyses

Inductively coupled plasma atomic emission spectrometry elemental analyses were carried out on an ATI Unicam 701

Table 2 ICP-AES analyses (ppm) for $[Mo_xW_{4-x}S_4(H_2O)_{12}]^{5+}$ cubes (x = 1-3). A solution of $[Mo_3S_4(H_2O)_9]^{4+}$ was used to calibrate for S, which with normal standards gives values $\approx 10\%$ too high

	Ratios		
Cube	Mo	W	E (=S or Se)
$[Mo_3WS_4(H_2O)_{12}]^{5+}$	3.0	1.1	4.0
$[Mo_2W_2S_4(H_2O)_{12}]^{5+}$	2.0	2.0	4.0
$[MoW_3S_4(H_2O)_{12}]^{5+}$	1.0	3.0	
$[MoW_3Se_4(H_2O)_{12}]^{5+}$	1.0	3.0	4.8

instrument. To calibrate for S a known sample of $[Mo_3S_4-(H_2O)_3]^{4+}$ was used, otherwise (with normal standards) values for S were $\approx 10\%$ too high.

Results

Preparation of Mo/W containing 5+ cubes

Identical procedures were used to convert trinuclear [W₃S₄-(H₂O)₁₂]⁵⁺ respectively. Typically an air-free solution of the trinuclear cluster (11 mm; 20 mL) in 2 m HCl was added to a 20-fold excess of K₄[Mo₂Cl₈] (0.3 g) and the mixture heated for \approx 3 h at 90 °C (steam bath). The product was diluted to 0.3 M acid and loaded onto an air-free Dowex 50W-X2 cationexchange column (20 \times 1 cm diameter). Excess $[Mo_2Cl_8]^{4-}$ was not held by the column. To obtain Hpts solutions washing was with 0.5 M Hpts (100 mL) and 1.0 M Hpts (80 mL) when two bands separated. Unreacted trinuclear cluster was eluted with 2 м Hpts, and the 5+ cube with 3 to 4 м Hpts as required. Elution was alternatively with 2 m HCl. Peak positions in UV/VIS/ NIR absorbance spectra, Table 1, were quantified in terms of ε values assuming air oxidation to a trinuclear product of known spectrum, and confirmed using ICP analyses (Table 2). The four metal atoms in the 5+ products have an average oxidation state of 3.25, and the trinuclear clusters written here as M^{IV}₃ undergo reductive addition with Mo^{II}₂, e.g. equation (1). No unreacted

$$W_3S_4^{4+} + Mo_2^{II} \longrightarrow MoW_3S_4^{5+} + [Mo^{III}]$$
 (1)

trinuclear starting complex was observed on columns, and yields were close to 100%.

A similar procedure was used to convert $[W_3Se_4(H_2O)_9]^{4+}$ into $[MoW_3Se_4(H_2O)_{12}]^{5+}$. The UV/VIS/NIR peak positions are included in Table 1.

Isolation and characterisation of crystalline products

Orange-brown crystals of $[MoW_3S_4(H_2O)_{12}]^{5+}$ were obtained from the most concentrated fraction from a Dowex column, eluted with 4 M Hpts, after ≈ 1 week at -20 °C. The UV/VIS spectrum of the mother-liquor corresponded to that of $[MoW_3S_4(H_2O)_{12}]^{5+}$. The ICP-AES analyses on a solution prepared from the crystals gave satisfactory W:Mo ratios, Table 2. After leaving over $Mg(ClO_4)_2$ for 3 d analyses were carried out {Found: C, 22.16, 22.45; H, 3.49, 3.63. Calc. for

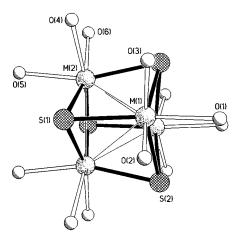
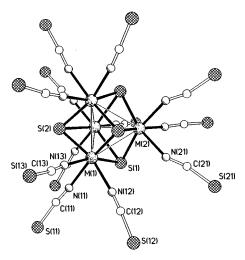



Fig. 1 Structure of the $[MoW_3S_4(H_2O)_{12}]^{5+}$ cation with unique atoms labelled. The cation lies on a two-fold rotation axis

Fig. 2 Structure of the $[MoW_3S_4(NCS)_{12}]^{6-}$ anion with unique atoms labelled. The anion lies on a three-fold rotation axis through M(2) and S(2)

 $C_{35}H_{59}MoO_{27}S_9W_3$: C, 22.74; H, 3.20%. Formula [MoW₃S₄-(H₂O)₁₂][pts]₅}.

To a solution of $[W_3MoS_4(H_2O)_{12}]^{5^+}$ in 2 M HCl solid NaNCS was added to ≈ 1 M. The colour changed to a dark red-brown in ≈ 20 min. A concentrated solution of Me_2NH_2Cl (5 mL) was added dropwise, and the solution left for 2 d in air. As in the case of $[Mo_4S_4(H_2O)_{12}]^{5^+}$ air oxidation occurs in the presence of NCS $^-$ giving the 6+ oxidation state. The black crystals collected were analysed {Found: C, 16.37, 16.46; H, 2.58, 2.64; N, 14.09, 14.29. Calc. for $C_{24}H_{48}MoN_{18}S_{16}W_3$: C, 16.48; H, 2.77; N, 14.42%. Formula $[Me_2NH_2]_6[MoW_3S_4(NCS)_{12}]$.

Crystal structures

Both structures contain complete M_4S_4 cubes with three terminal ligands (H_2O or NCS) on each metal atom, Figs. 1 and 2. Thiocyanate is co-ordinated through nitrogen. In both cases the Mo and W atoms are disordered over the four metal sites, representing random orientational disorder of the Mo_3WS_4 cubes. The counter ions and solvent water molecules also show disorder.

Selected geometric results are given in Tables 3 and 4. The M_4S_4 central units have M–S distances ranging from 2.3437(10) to 2.3836(12) Å in the aqua case, and 2.342(4) to 2.369(4) Å in the thiocyanate case. The M–M distances range from 2.7052(4) to 2.8793(3) Å (aqua) and 2.3814(14) to 2.8494(13) Å (thiocyanate). These are similar to corresponding distances found in the few other reported M_4S_4 cubes with exclusively aqua $^{26.27}$ or thiocyanato 28 ligands.

 $\label{eq:Table 3} \textbf{Table 3} \quad \text{Selected bond lengths (Å) and angles (°) for } [MoW_3S_4(H_2O)_{12}] \\ [pts]_5 \cdot Hpts \cdot 16H_2O$

M(1) M(2)

M(1)-M(2)	2.7650(3)	M(1)-M(1A)	2.8393(4)
M(1)-M(2A)	2.8793(3)	M(2)-M(2A)	2.7052(4)
M(1)-S(1)	2.3611(10)	M(1)-S(2)	2.3607(10)
M(1)-S(2A)	2.3437(10)	M(2)-S(1)	2.3486(12)
M(2)-S(1A)	2.3836(12)	M(2)-S(2A)	2.3673(10)
M(1)-O(1)	2.144(3)	M(1)-O(2)	2.148(3)
M(1)-O(3)	2.128(3)	M(2)-O(4)	2.125(3)
M(2)-O(5)	2.154(3)	M(2)-O(6)	2.181(3)
O(3)-M(1)-O(1)	80.65(10)	O(3)-M(1)-O(2)	77.53(11)
O(1)-M(1)-O(2)	79.17(10)	S(2A)-M(1)-S(2)	104.08(3)
S(2A)-M(1)-S(1)	106.67(4)	S(2)-M(1)-S(1)	101.55(4)
O(4)-M(2)-O(5)	81.11(11)	O(4)-M(2)-O(6)	78.79(11)
O(5)-M(2)-O(6)	80.29(11)	S(1)-M(2)-S(2A)	106.31(4)
S(1)-M(2)-S(1A)	108.64(4)	S(2A)-M(2)-S(1A)	100.70(4)
M(2)-S(1)-M(1)	71.90(3)	M(2)-S(1)-M(2A)	69.73(3)
M(1)-S(1)-M(2A)	74.72(3)	M(1A)-S(2)-M(1)	74.25(3)
M(1A)-S(2)-M(2A)	71.88(3)	M(1)-S(2)-M(2A)	75.03(3)

Symmetry transformations used to generate equivalent atoms: A -x + 1, y, $-z + \frac{1}{2}$; B -x, -y, -z.

Table 4 Selected bond lengths (Å) and angles (°) for $[Me_2NH_2]_6\text{-}[MoW_3S_4(NCS)_{12}]\text{-}0.5H_2O$

M(1)-M(2)	2.8494(13)	M(1)-M(1A)	2.8314(14)
M(1)-S(1)	2.369(4)	M(1)-S(1A)	2.363(4)
M(1)-S(2)	2.342(4)	M(2)-S(1)	2.356(4)
M(1)-N(11)	2.101(11)	M(1)-N(12)	2.090(12)
M(1)-N(13)	2.078(11)	M(2)-N(21)	2.08(2)
N(13)-M(1)-N(12)	82.0(5)	N(13)-M(1)-N(11)	81.3(5)
N(12)-M(1)-N(11)	80.2(5)	S(2)-M(1)-S(1A)	104.21(11)
S(2)-M(1)-S(1)	104.00(11)	S(1A)-M(1)-S(1)	103.4(2)
N(21)-M(2)-N(21A)	84.5(5)	S(1)-M(2)-S(1A)	103.95(10)
M(2)-S(1)-M(1B)	74.27(10)	M(2)-S(1)-M(1)	74.17(11)
M(1B)-S(1)-M(1)	73.50(11)	M(1A)-S(2)-M(1)	74.4(2)

Symmetry transformations used to generate equivalent atoms: A z, x, y; B y, z, x.

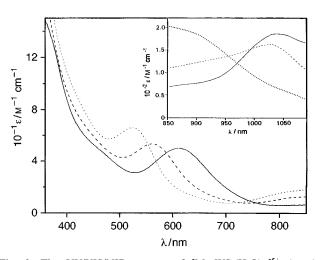


Fig. 3 The UV/VIS/NIR spectra of $[Mo_3WS_4(H_2O)_{12}]^{5+}$ (---), $[Mo_2W_2S_4(H_2O)_{12}]^{5+}$ (---) and $[MoW_3S_4(H_2O)_{12}]^{5+}$ (····), in 2.0 M Hpts

Other characterisations of $[Mo_xW_{4-x}S_4(H_2O)_{12}]^{5+}$

The ICP-AES elemental analyses on 2.0 m HCl solutions are summarised in Table 2. The UV/VIS/NIR spectra for $[Mo_xW_{4-x}S_4(H_2O)_{12}]^{5+}$ are shown in Fig. 3 and those for $[MoW_3Se_4(H_2O)_{12}]^{5+}$ and $[MoW_3S_4(H_2O)_{12}]^{5+}$ in Fig. 4, with a listing of peak positions alongside those for $[Mo_4S_4(H_2O)_{12}]^{5+}$ in Table 1. 1,12 In all cases spectra and redox properties are consistent with products in the 5+ state. Peak positions shift to

Table 5 Reduction potentials $E^{\circ\prime}$ vs. NHE ($\approx 20\,^{\circ}\mathrm{C}$) from cyclic and square-wave voltammetry on $[\mathrm{Mo_xW_{4-x}S_4(H_2O)_{12}}]^{5^+}$ and $[\mathrm{MoW_3Se_4^-}(\mathrm{H_2O})_{12}]^{5^+}$ alongside values previously determined for $[\mathrm{Mo_4S_4(H_2O)_{12}}]^{5^+}$ and $[\mathrm{Mo_4Se_4(H_2O)_{12}}]^{5^+}$ in 2.0 M Hpts. The $E_1^{\circ\prime}$ values are for the 6+/5+ couples, and $E_2^{\circ\prime}$ for the 5+/4+ couples

5+ Cube	$E_1^{\circ\prime}/\text{mV}$	$E_2^{\circ\prime}/\mathrm{mV}$	Ref.
$[MoW_3S_4(H_2O)_{12}]^{5+}$	258	-395	This work
$[Mo_2W_2S_4(H_2O)_{12}]^{5+}$	422	-248	This work
$[Mo_3WS_4(H_2O)_{12}]^{5+}$	673	6	This work
$[Mo_4S_4(H_2O)_{12}]^{5+}$	860	210	1
$[MoW_3Se_4(H_2O)_{12}]^{5+}$	214	-410	This work
$[Mo_4Se_4(H_2O)_{12}]^{5+}$	792	193	12

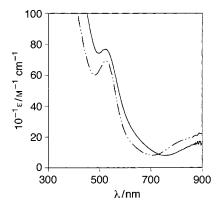
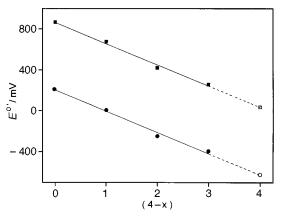
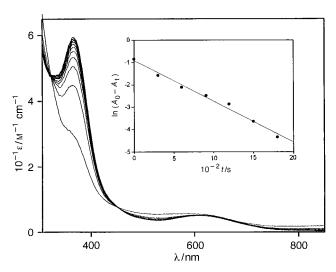



Fig. 4 The UV/VIS/NIR spectrum of $[MoW_3S_4(H_2O)_{12}]^{5+}$ (——alongside that of $[MoW_3S_4(H_2O)_{12}]^{5+}$ (——) in 2.0 M HCl

Fig. 5 Variation of reduction potentials vs. NHE (≈ 20 °C), $E_1^{\circ \circ}$ for $[\text{Mo}_x \text{W}_{4-x} \text{S}_4(\text{H}_2\text{O})_{12}]^{6+/5+}$ and $E_2^{\circ \circ}$ for $[\text{Mo}_x \text{W}_{4-x} \text{S}_4(\text{H}_2\text{O})_{12}]^{5+/4+}$ couples (x=1-3), from cyclic voltammetry in 2.0 M Hpts solutions alongside those for the corresponding $\text{Mo}_4 \text{S}_4$ (x=4) couples. The open circles are extrapolated values for the $\text{W}_4 \text{S}_4$ (x=0) cubes which have not so far been isolated

higher energy (lower λ) values on increasing the number of W atoms.


Electrochemical studies on $[Mo_xW_{4-x}S_4(H_2O)_{12}]^{5+}$ cubes

Reversible oxidation and reduction processes were observed for the x=1-3 cubes. Solutions were O_2 -free (N_2 used). Reduction potentials $E^{\circ\prime}$ vs. NHE for the $6+/5+(E_1^{\circ\prime})$ and $5+/4+(E_2^{\circ\prime})$ couples (2) and (3) were determined. These increase as x

$$Mo_xW_{4-x}S_4^{6+} + e^- \longrightarrow Mo_xW_{4-x}S_4^{5+}$$
 (2)

$$Mo_rW_{4-r}S_4^{5+} + e^- \longrightarrow Mo_rW_{4-r}S_4^{4+}$$
 (3)

increases, Table 5. Values of $E^{\circ\prime}$ for $[\mathrm{Mo_4S_4(H_2O)_{12}}]^{5+}$ have been reported previously, and are also included. Graphs showing linear trends of $E^{\circ\prime}$ with 4-x are shown in Fig. 5. From

Fig. 6 The UV/VIS absorbance spectra for the reaction of [Mo₃W-S₄(H₂O)₁₂]⁵⁺ (≈0.3 mm) with [Fe(H₂O)₆]³⁺ (≈2.1 mm) at 25 °C in 2.0 m Hpts recorded at 5 min intervals (absorbance increases at ≈350 nm). The first spectrum is for [Mo₃WS₄(H₂O)₁₂]⁶⁺, and the kinetic first-order plot (inset) is for the decay of this species

these values it would be expected that rate constants for the oxidation of 5+ cubes to 6+ would decrease as x increases.

Characterisation of [MoW₃Se₄(H₂O)₁₂]⁵⁺

The product was eluted with 2 m HCl from a Dowex 50W-X2 column and reacted with excess NCS $^-$ (≈ 1 m). Black crystals of [Me₂NH₂]₆[MoW₃Se₄(NCS)₁₂] were obtained (Found: C, 14.72; H, 2.10; N, 12.55. Calc. for C₂₄H₄₈MoN₁₈S₁₂Se₄W₃: C, 14.88; H, 2.55; N, 13.02%). Details of the UV/VIS/NIR spectrum along with those for the [Mo₄Se₄(H₂O)₁₂]⁵⁺ and ICP analyses on a 2 m HCl solution are included in Tables 1 and 2. Reduction potentials are listed in Table 5.

Double cube products

In the column chromatography carried out to isolate $[MoW_3-S_4(H_2O)_{12}]^{5+}$ small amounts of a violet more highly charged product eluted with 4 M Hpts, and gave a UV/VIS absorption spectrum with peaks/nm at 440, 569 and 831. Similarly in the corresponding $[MoW_3Se_4(H_2O)_{12}]^{5+}$ preparation a violet product was obtained with peaks at 446, 557 and 818 nm. The latter gave ICP-AES analyses W:Mo:Se of 6.0:1.4:7.4. Together with the elution behaviour and shape of UV/VIS spectra, the products are believed to be the corner-shared double cubes $[MoW_6Se_8(H_2O)_{18}]^{8+}$ and $[MoW_6Se_6(H_2O)_{18}]^{8+}$, analogues of the previously reported $[Mo_7Se_8(H_2O)_{18}]^{8+}$ and $[Mo_7Se_8(H_2O)_{18}]^{8+}$ and $[Mo_7Se_8(H_2O)_{18}]^{8+}$

Stability of $[Mo_xW_{4-x}S_4(H_2O)_{12}]^{5+}$ in air

Air oxidation of the x=1-3 cubes ($\approx 9 \times 10^{-4}$ M) in 2.9 M Hpts was monitored by UV/VIS absorbance changes in the 500–600 nm range. Overall rates were not in the order expected from $E^{\circ\prime}$ values, and at least two stages are observed. Trinuclear products were obtained. For example in the case of [Mo₃WS₄(H₂O)₁₂]⁵⁺ reaction is complete overnight to give [Mo₃S₄(H₂O)₁₂]⁵⁺ give first a brown coloration believed to be the corresponding 6+ cubes which decay over longer periods to give respectively green [Mo₂WS₄(H₂O)₉]⁴⁺ (2–3 d), and grey [MoW₂S₄(H₂O)₉]⁴⁺ (≈ 1 week). The trinuclear products are formed in a process which involves exclusively loss of W.

Oxidation of $[Mo_xW_{4-x}S_4(H_2O)_{12}]^{5+}$ with $[Fe(H_2O)_6]^{3+}$

Reactions of the x = 1-3 cubes (≈ 0.3 mm) with a seven-fold excess of $[\text{Fe}(\text{H}_2\text{O})_6]^{3+}$ (≈ 2.1 mm) were monitored by UV/VIS spectrophotometry, e.g. Figs. 6 and 7. Two separate stages are

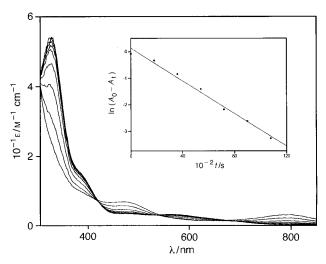


Fig. 7 The UV/VIS absorbance spectra for the reaction of [MoW₃-S₄(H₂O)₁₂]⁵⁺ (\approx 0.3 mm) with [Fe(H₂O)₆]³⁺ (\approx 2.1 mm) at 25 °C, in 2.0 m Hpts recorded at 30 min intervals (absorbance increases at \approx 350 nm). The first spectrum is for [MoW₃S₄(H₂O)₁₂]⁶⁺, and the kinetic first-order plot (inset) is for the decay of this species

observed. The first spectrum obtained is that of the 6+ cube following rapid oxidation of the 5+ cube. Although no rate constants were determined rates observed for the first stage are according to $E_1^{\circ\prime}$ values with the $[MoW_3S_4(H_2O)_{12}]^{5+}$ cube reacting the fastest. The second stage corresponds to a slower decay process giving the same trinuclear product as in the air oxidation experiments. Thus the $[Mo_3WS_4(H_2O)_{12}]^{5+}$ cube is converted into $[Mo_3S_4(H_2O)_9]^{4+}$ (Fig. 6), and $[MoW_3S_4-(H_2O)_{12}]^{5+}$ into $[MoW_2(H_2O)_9]^{4+}$ (Fig. 7), with loss of W in both cases. The decay of $[Mo_3WS_4(H_2O)_{12}]^{6+}$ ($k = 1.8 \times 10^{-3} \text{ s}^{-1}$), Fig. 6, is faster than the decay of $[MoW_3S_4(H_2O)_{12}]^{6+}$ (k = 3.1×10^{-4} s⁻¹), Fig. 7. After completion of the reaction a faint deposit formed on the side of the optical cell, and is most likely a polymeric film of WVI. However, amounts (and conditions) were not suitable for tests using SnII (reductant generating W blues), or Ag⁺ (yellow precipitate with [WO₄]²⁻),³⁰ and we have been unable to confirm the identity of this product. Crossover points in the early stages of the runs shift slightly, Figs. 6 and 7, due to some overlapping of the two stages. No reaction was observed for $[Mo_4S_4(H_2O)_{12}]^{5+}$ with $[Fe(H_2O)_6]^{3+}$ (20-fold excess), a process which is thermodynamically unfavourable by $\approx 90 \text{ mV}$.

Discussion

First some comment is required on the crystal structure and formula assigned to the 5+ cube [MoW₃S₄(H₂O)₁₂][pts]₅. Hpts·16H₂O. The mother-liquor from which crystals were obtained gave the UV/VIS spectrum of [MoW₃S₄(H₂O)₁₂]⁵⁺. Crystals were moreover the orange-brown colour of the 5+ cube. The six pts groups detected in the structure unit cell are therefore assigned as five pts counter ions and one Hpts, and not six pts which would imply a 6+ charge on the cube. It is difficult to distinguish between Hpts and pts in the crystal structure because of extensive hydration and H-bonding involving pts groups. Also with regard to the second crystal structure the cluster anion [MoW₃S₄(NCS)₁₂]⁶⁻ is obtained by reacting [MoW₃S₄(H₂O)₁₂]⁵⁺ in 2.0 M HCl with 1 M NCS⁻ in air, when oxidation occurs. Such an oxidation of 5+ to 6+ has been observed previously for [Mo₄S₄(H₂O)₁₂]⁵⁺ in the presence of 1 M NCS^{-.1,28} In both structures reported herein the Mo and W atoms are disordered. Metal-metal bonding is evident, but the precision is not sufficient to define differences in bond lengths for the 5+ and 6+ oxidation states.

The UV/VIS/NIR spectra of the three new Mo/W cubes in the 5+ state, Fig. 3, indicated prominent LMCT transitions.

Peak positions, alongside those for $[Mo_4S_4(H_2O)_{12}]^{5+}$, are compared in Table 1. Wavelength (λ /nm) trends observed for the $Mo_4S_4^{5+}$, $Mo_3WS_4^{5+}$, $Mo_2W_2S_4^{5+}$, $MoW_3S_4^{5+}$ cores, 635 \rightarrow 611 \rightarrow 560 \rightarrow 522 and 1100 \rightarrow 1038 \rightarrow 1020 \rightarrow 850 indicate shifts to higher energy transitions with an increasing number of W atoms.

Reduction potentials (vs. NHE) for the $6+/5+(E_1^{\circ\prime})$ and 5+/ $4+(E_2^{\circ\prime})$ couples, Table 5, also show systematic trends to more negative values the more W atoms are incorporated. The linear plots in Fig. 5 indicate shifts of about equal increments for each W included. The shifts observed reflect the greater difficulty in generating the lower oxidation states of W. Such effects are now well documented. Thus the stronger preference of W (over Mo) for the higher oxidation states is demonstrated by the 10^5-10^6 times greater rate constants for the [IrCl₆]²⁻ oxidation of dinuclear M^V_2 complexes $[W_2O_4(H_2O)_6]^{2^+}$ vs. $[Mo_2O_4(H_2O)_6]^{2^+}$, 31 and $[W_2O_4(edta)]^{2^-}$ vs. $[Mo_2O_4(edta)]^{2^-}$. The same ratio applies also for the trinuclear M^{IV}_3 complex $[W_3O_4(H_2O)_9]^{4^+}$ vs. [Mo₃O₄(H₂O)₉]⁴⁺. 33 Although few reduction potentials have been reported for Mo and W couples respectively, from studies on Keggin heteropolyanions incorporating W and Mo it has been concluded that the WVI/WV couple is >400 mV more strongly reducing (the reduction potential is more negative) than the Mo^{VI}/Mo^V couple.³⁴ Latimer has also listed potentials for the $WO_3(s)/W_2O_5$ (30 mV) and $MoO_3(aq)/MoO_2^+$ (400 mV) couples.²⁵ In the present work the difference in $E^{\circ\prime}$ with incorporation of each W averages 205 mV. The E° values for $[MoW_3Se_4(H_2O)_{12}]^{5+}$ as compared with $[Mo_4Se_4(H_2O)_{12}]^{5+}$ show similar trends, Table 5. In view of the different redox properties of Mo and W it seems reasonable to regard the [Mo₃WS₄(H₂O)₁₂]⁵⁺ cube as approximating to Mo^{III}₃W^{IV} oxidation states. S5,36 Other assignments such as Mo^{III}₂W^{III}W^{IV} for Mo₂W₂S₄⁵⁺ suggest possible delocalisation of the two W's to give an average 3.5 oxidation state. With the 6+ cubes an assignment Mo^{III}₂W^{IV}₂ for Mo₂W₂S₄⁶⁺ may be acceptable, but Mo^{III}₃W^V for Mo₃WS₄⁶⁺ seems less likely because of the need to generate an oxo/hydroxo ligand to the WV.

The UV/VIS spectrophotometric changes for the oxidation of $[Mo_xW_{4-x}S_4(H_2O)_{12}]^{5+}$ cubes with $[Fe(H_2O)_6]^{3+}$ indicate two stage processes with formation of 6+ cubes in the first stage. A decay to the trinuclear clusters is then observed. Relative rates of the first stage are determined by $E_1^{\circ\prime}$ values, Table 5, with $[MoW_3S_4(H_2O)_{12}]^{5+}$ predictably the fastest reaction. Stability of the 6+ cube is greater the more W atoms are present. The reaction sequence is illustrated as in equation (4),

$$MoW_3S_4^{\ 5+} \xrightarrow{\quad k_1 \quad} MoW_3S_4^{\ 6+} \xrightarrow{\quad k_2 \quad} MoW_2S_4^{\ 4+} \ + \ [W] \ \ (4)$$

with k_1 largest and k_2 smallest for the x = 1 reaction shown. The reactions represent an efficient preparative route for the conversion of $[W_3S_4(H_2O)_9]^{4+}$ into $[MoW_2S_4(H_2O)_9]^{4+}$ etc.

No W_4S_4 core aqua ion has yet been prepared. Extrapolation of the correlations in Fig. 5 by linear regression method gives estimated reduction potentials for $[W_4S_4(H_2O)_{12}]^{6+/5+}$ of 39 mV, and for $[W_4S_4(H_2O)_{12}]^{5+/4+}$ of -627 mV, which are 821 mV and 837 mV respectively more negative than the corresponding values for the Mo_4S_4 cubes. The $[W_4S_4(H_2O)_{12}]^{6+}$ is therefore the most likely oxidation state to be generated, with $[W_4S_4-(H_2O)_{12}]^{4+}$ much more difficult to access. Fragmentation of $[W_4S_4(H_2O)_{12}]^{6+}$ to give $[W_3S_4(H_2O)_9]^{4+}$ is a possible competing process. Existing W_4S_4 cubes have already been referred to, $^{6-8}$ and CN^- is also expected to stabilise the different oxidation states. This possible to predict the UV/VIS peak positions for the $[W_4S_4(H_2O)_{12}]^{5+/6+}$ cubes from the information in Table 1 and Fig. 3.

In more general terms, variable oxidation state behaviour is observed for the Group 6 $[M_4S_4(H_2O)_{12}]^{n+}$ and $[M_4Se_4-(H_2O)_{12}]^{n+}$ (M = Mo or W) mixed cubes considered in this paper (n = 4-6), and the chemistry is quite different to the higher electron count heteroatom (M') derivatives of $[Mo_3S_4(H_2O)_9]^{4+}$ and

[W₃S₄(H₂O)₉]⁴⁺ obtained by incorporation of M' from other (higher) groups up to 15. As far as structural properties (including bond lengths) are concerned Mo and W give very similar behaviour, and are interchangeable, even to the extent of giving corner-shared double cubes. In contrast striking differences in redox properties of Mo and W are illustrated in these studies.

Acknowledgements

We thank the european Union HCMP for their support under a network grant ERBCHRX-CT 94-0632, and the University of La Laguna in Tenerife for leave of absence (R. H.-M.). We are also grateful to the Russian Foundation for Basic Research Grant No. 96-03-32954 for financial support (M. N. S., A. V. V.), and EPSRC for an equipment grant (to W. C.).

References

- 1 B.-L. Ooi, C. Sharp and A. G. Sykes, *J. Am. Chem. Soc.*, 1989, **111**, 125
- 2 C. Sharp and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1988, 2579.
- 3 M.-C. Hong, Y.-J. Li, J.-X. Lu, M. Nasreldin and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1993, 2613.
- 4 D. M. Saysell, M. N. Sokolov and A. G. Sykes, *ACS Symp. Ser.*, 1996, **653**, 216.
- 1994, **33**, 210. 5 M. Nasreldin, Y.-J. Li, F. E. Mabbs and A. G. Sykes, *Inorg. Chem.*, 1994, **33**, 4283.
- 6 S.-F. Lu, J.-Q. Huang, H.-H. Zhuang, J.-Q. Li, D.-M. Wu and Z.-X. Xiang, *Polyhedron*, 1991, **10**, 2203.
- 7 M. L. Sampson, J. F. Richardson and M.E. Noble, *Inorg. Chem.*, 1992. **31**. 2726.
- 8 V. P. Fedin, I. V. Kalinia, A. V. Virovets, N. Y. Podbevezskaya and A. G. Sykes, *Chem. Commun.*, 1998, 237.
- 9 H. Akashi, T. Shibahara, T. Narahara, H. Tsuru and H. Kuroya, *Chem. Lett.*, 1989, 129.
- 10 T. Shibahara, E. Kawano, M. Okano, M. Nishi and H. Kuroya, Chem. Lett., 1986, 827.
- 11 T. Shibahara, H. Kuroya, K. Matsumoto and S. Ooi, *Inorg. Chim. Acta*, 1986, **116**, L25.
- 12 M. Nasreldin, G. Henkel, G. Kampmann, B. Krebs, G. J. Lamprecht, C. A. Routledge and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1993, 737.
- 13 G. J. Lamprecht, M. Martinez, M. Nasreldin, C. A. Routledge, N. Al-Shatti and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1993, 747.
- 14 V. P. Fedin, M. N. Sokolov, O. A. Geras'ko, A. V. Virovets, N. V. Podberezskaya and V. Ye. Federov, *Inorg. Chim. Acta*, 1991, 187, 81.
- 15 D. M. Saysell, V. P. Fedin, G. J. Lamprecht, M. N. Sokolov and A. G. Sykes, *Inorg. Chem.*, 1997, 36, 2982.

- 16 V. P. Fedin, G. J. Lamprecht, T. Kohzuma, W. Clegg, M. R. J. Elsegood and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1997, 1747.
- 17 V. P. Fedin, M. N. Sokolov, A. V. Virovets, N. V. Podberezskaya and V. E. Federov, *Inorg. Chim. Acta*, 1998, 269, 292.
- 18 R. Hernandez-Molina, D. N. Dybtsev, V. P. Fedin, M. R. J. Elsegood, W. Clegg and A. G. Sykes, *Inorg. Chem.*, 1998, 37, 2995.
- 19 V. P. Fedin, M. N. Sokolov and A. G. Sykes, *J. Chem. Soc.*, *Dalton Trans.*, 1996, 4089.
- 20 J. W. McDonald, G. D. Friesen, L. D. Rosenheim and W. E. Newton, Inorg. Chim. Acta, 1983, 72, 205.
- 21 V. R. Ott, D. S. Sweiter and F. A. Schulz, *Inorg. Chem.*, 1977, 16, 2538
- 22 J. E. Varey and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1993, 3203
- 23 T. Shibahara and M. Yamasaki, *Inorg. Chem.*, 1991, **30**, 1687, 1996, 4089
- 24 J. V. Brencic and F. A. Cotton, Inorg. Chem., 1970, 9, 351.
- 25 W. M. Latimer, in Oxidation States of the Elements and Their Potentials in Aqueous Solutions, Prentice-Hall, Englewood Cliffs, NJ, 2nd edn., 1952.
- 26 T. Shibahara, T. Yamamoto, H. K. Kanadani and H. Kuroya, J. Am. Chem. Soc., 1987, 109, 3495.
- 27 T. Shibahara, H. Kuroya, H. Akashi, K. Matsumoto and S. Ooi, Inorg. Chim. Acta, 1993, 212, 251.
- 28 F. A. Cotton, M. P. Diebold, Z. Dori, R. Llusar and W. Schwotzer, J. Am. Chem. Soc., 1985, 107, 6735.
- 29 M. N. Sokolov, N. Coichev, H. D. Moya, R. Hernandez-Molina, C. D. Borman and A. G. Sykes, *J. Chem. Soc.*, *Dalton Trans.*, 1997, 1863
- 30 A. E. Vogel and G. Svehla, 'Macro- and Semimicro Qualitative Inorganic Analyses', Longman, London, 5th edn. revised by G. Svehla, 1979.
- 31 C. Sharp, E. F. Hills and A. G. Sykes, *J. Chem. Soc.*, *Dalton Trans.*, 1987, 2293; G. R. Cayley, R. S. Taylor, R. K. Wharton and A. G. Sykes, *Inorg. Chem.*, 1977, 16, 1377.
- 32 A. B. Soares, R. C. Taylor and A. G. Sykes, *J. Chem. Soc.*, *Dalton Trans.*, 1980, 1101; R. K. Wharton, J. F. Ojo and A. G. Sykes, *J. Chem. Soc.*, *Dalton Trans.*, 1975, 1526.
- 33 B.-L. Ooi, A. L. Petrou and A. G. Sykes, *Inorg. Chem.*, 1988, 27, 3626; B.-L. Ooi and A. G. Sykes, *Inorg. Chem.*, 1988, 27, 310.
- 34 J. J. Altenau, M. T. Pope, R. A. Prados and H. So, *Inorg. Chem.*, 1975, 14, 417.
- 35 Y.-J. Li, M. Nasreldin, M. Humanes and A. G. Sykes, *Inorg. Chem.*, 1992. 31, 3011.
- 36 W. McFarlane, M. Nasreldin, D. M. Saysell, Z.-S. Jia, W. Clegg, M. R. J. Elsegood, K. S. Murray, B. Moubaraki and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1996, 363.
- 37 A. Müller, R. Jostes, W. Eltzner, C.-S. Nie, E. Diemann, H. Bögge, M. Zimmermann, M. Dartmann, U. Reinsch-Vogell, S. Che, S. J. Cyvin and B. N. Cyvin, *Inorg. Chem.*, 1985, 24, 2872.

Received 6th May 1998; Paper 8/03396J